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We study a general orthogonal polynomial set which includes the sieved
associated ultraspherical and the sieved Pollaczek polynomials. This we get by
letting q approach a root of unity in the recurrence relation and the generating
functions of the associated q-uitraspherical and the Pollaczek polynomials. We find
the weight functions with respect to which these polynomials are orthogonal
and determine the asymptotic behavior of these polynomials on and off their
interval of orthogonality. © 1992 Academic Press, Inc.

1. INTRODUCTION

AI-Salam, Allaway, and Askey [1] introduced two interesting families of
orthogonal polynomials which they called sieved ultraspherical polyno
mials of the first and second kinds. To get them they let q tend to a root
of unity in the three term recurrence relation for the continuous
q-ultraspherical polynomials, {Cn(x; PI q)}, which may be defined [2] by

C_ 1(x;Plq)=0, Co(x;Plq)=l, (1.1)

and, for n > 0, by

2x(1- pqn) Cn(x; PI q) = (1- qn+ I) Cn+ I(X; PI q)

+(1-p2qn-I)Cn_ l (x;Plq). (1.2)
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More specifically AI-Salam, Allaway, and Askey let Wk = exp{2ni/k}, k
being a positive integer. Then they showed that the sieved ultraspherical
polynomials of the first and second kinds, which they defined, respectively,
by

B~(x; k) = lim C(x; sk).+ lWk IsWk ),
s--.-.+1

may be generated by the recurrence relations

c~(x; k) = 1, c1(x; k) = x

and

B~(x; k) = 1, B1(x; k) = 2x,

- (m + 2..1.) B~k_2(X; k).

(1.4 )

The work in [1] generated a great deal of interest and led to various
generalizations and applications. (See [4--9, 11, 12].)

Interesting applications of sieved polynomials have been given by Van
Assche and Magnus [16]. They used them to prove that a discrete system
of orthogonal polynomials introduced by Lubinsky [14] has convergent
recurrence coefficients. In addition Van Assche and Magnus [16] used
sieved polynomials to construct two examples of polynomial sets which are
orthogonal with respect to discrete measures with masses that are dense in
the interval [-1, 1] and proved that the coefficients in the three term
recurrence relations of the corresponding orthonormal systems converge
(as n -+ (jJ). These two examples were easier to handle than Lubinsky's
original examples which show that a certain sufficient condition of
Rahmanov is not necessary.

The sieved ultraspherical polynomials also turned out to be spherical
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harmonics in rtfn where the corresponding Laplacian is modified to include
terms corresponding to reflections (see [9]).

In [12] symmetric sieved Pollaczak polynomials were introduced by
sieving the q-Pollaczek polynomials instead of sieving the continuous
q-ultraspherical polynomials. The general sieved Pollaczek polynomials
were introduced and studied in some details in [7].

The purpose of this work is to further extend the work on sieved
Pollaczek polynomials. Our extension contains two additional parameters.
One parameter corresponds to replacing n by n + c in the coefficients of the
three term recurrence relation of the general sieved Pollaczek polynomials.
The second replaces the divisibility of nand n + 1 by k in (1.3) and (1.4)
by divisibility of n + r by k where r is a non-negative integer. The
parameter c is an association parameter. In particular special cases of our
work contain generalizations of sieved ultraspherical polynomials in which
kin or kin + 1 are replaced by kin + r. We feel that the degree of freedom
gained by introducing the parameter r is useful.

The paper is arranged as follows. In Section 2 we define the sieved
associated Pollaczek polynomial of the second kind by sieving the
recurrence relations of the associated q-Pollaczek polynomials. We also
apply the same sieving process to generating functions of the associated
q-Pollaczek polynomials and derive a generating function for the polyno
mials under consideration. In Section 3 the asymptotics of the sieved
associated polynomials and their corresponding numerator polynomials are
derived. In Section 4 the Hadamard singular integral is used to find the
absolutely continuous component of the measure with respect to which our
polynomials are orthogonal. For the definition and various properties of
the Hadamard integral see [3, 7]. In Section 5 we discuss the nature of the
discrete spectrum and mention some open problems.

We shall make use of the Darboux method for finding asymptotic expan
sions of the coefficients of certain generating functions which, in our case,
happen to be orthogonal polynomials. This method is explained in [3].

It may be of interest to note that the results of this work do not follow
from the general theories of sieved polynomials in [6, 11]. The reason is
that [6] deals only with the symmetric polynomials while the result [11]
do not even include the sieved Pollaczak polynomials (the special case
c = r = 0 of our work) as it was pointed out in [8].

The sieved polynomials of the first kind can be treated in the same way.

2. SIEVED ASSOCIATED POLLACZEK POLYNOMIALS

In this section we study the sieved associated Pollaczek polynomials of
the second kind and their generating functions.



SIEVED ORTHOGONAL POLYNOMIALS 309

Charris and Ismail [7J started with an analog of the continuous
q-ultraspherical polynomials, namely,

(1- qn+ I) F n+ I(X) = 2[(1- U Aqn)x + vqnJ Fn(x)

-(I-A 2qn-I)Fn_ 1(x), n>O (2.1)

Fo(x) = 1, F_ 1(x)=0.

One can then define [13 J the associated q-Pollaczek polynomials by

(1 - yqn+ 1) F~YL(x) = 2[(1 - yU Aqn)x + yvqnJ F~Y)(x)

-(I-yA2qn-l)F~Y~I(X), (2.2)

F~)(x)=I, F(]i)I(x) =0.

We shall use the notation F~Y)(x; U, V, A; q) instead of F~Y)(x) if we need
to show the dependence on the parameters y, U, A, V, and q.

Now let r be a non-negative integer, 0:( r < k, a, b, c real numbers,
A, > -1/2, and Iql < 1. Set in (2.2)

q = ws, w = exp(2ni/k),

y = skc+rwr, (2.3)

DEFINITION. The sieved associated Pollaczek polynomials of the second
kind are defined as

Q~,A,r)(x)= Q~A,r)(x; a, b, c; k) = lim F~(x; U, V, A; q), (2.4)
s~l

where y, U, V, A, and q are set as above in (2.3).

Thus (2.2) establishes the following theorem:

THEOREM 1. The polynomials Q~.,r)(x) can be generated by the initial
conditions

Q&A,rl(x) = 1,

Q\A,r)(x) = 2x if r -# k - 1

=2[(A,+a+c+ l)x+bJ/(c+ 1) if r=k-l,

(2.5)
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and the recurrence relation
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Q~:l(x) = 2XQ~A,r)(X) - Q~:"l(x), if k (n + r + 1

(c+m) Q~\r~r(X)=2[(A+a+c+m)x+b]Q~{~r-l(X) (2,6)

-(2A+m+c) Q~{~r-2(X), otherwise.

We now determine the generating function of {F~Y)(x)}, namely,

00

F(Y)(x, t) = L F~Y)(x)tn.

n~O

(2.7)

Multiplying (2.2) by tn + 1 and summing for n = 1, 2, 3, ... we get the
q-difference equation

(1 - 2xt + t2) F(Y)(x, t) = (1 - ')') + ')'[,1 2t2- 2(xU ,1 - V)t + 1] F(Y)(x, qt).

(2.8)

Now put t2-2xt+l=(I-tla)(l-tIP) and ,1 2t2-2(xU,1-V)t+l=
(1- t/~)(1 - tlo. Thus (2.8) implies that

F(Y)(x t)=(I-y) I (t/~,q)n(t/(,q)n yn
, n~O (tla, q)n+ 1 (tiP, q)n+ 1

_ 1- Y €P (t/~, tiC q; Y)
- (1 - tla)(1 - tiP) 3 2 tqla, tqlP

= F(x, t) L (~q2Ia, q)j (~q2IP, q)m
m,j;;'O (q, q)j (q, q)m

where

F(x t) = F(l)(x t) = (t/~, q)oo (tl', q)oo
, '(tla, q)oo (tIP, q)oo

is the generating function for the q-Pollaczek polynomials [7].
We now perform the sieving process (2,3) and (2.4) on (2.9) to get the



SIEVED ORTHOGONAL POLYNOMIALS 311

generating function for the sieved associated Pollaczek polynomials of the
second kind. We get

(Ar) 1 (-B)(at)k-r
Q . (x,t)=(1-t/a)(l-t/p)+(I-t/a)(l-t/p)

· ( 1 - ~:r(1 - ~:r
· ( UC ( 1 _ u ~:) - A ( 1 _ u ~:) - 0 - 1 du

(_A)(Pt)k-r ( tk)A ( tk)O
+ (1- t/a)(l- tiP) 1- ak 1 - 13k

1 ( tk
) - 0 ( tk ) - A-I·t U

C 1- U 13k 1- u ak du, (2.10)

where A=A(z)= -A.+(az+bVJ?=l, B=B(z)= -A.-(az+bVJ?=l,

a := a(z) = z +J?=l, 13:= z - J?=l, and z ¢ rc/[ -1, 1]. For detailed
calculation of the above sieving process see [7].

The case k = 1, r = 0 gives the generating function for the associated
Pollaczek polynomials [7]. On the other hand if a = b = r = 0 and k = 1 we
get the generating function for the associated ultraspherical polynomials
[5].

We now simplify (2.10) to get

l( t)-A-l( t)-O. BA(x, t) t 1 - u ak 1 - u 13k U
C du

(
tk)-O

. 1 - u - U C
- 1 du

f3k ' (2.11 )

where BA(x, t)=(1-2xt+t2)-1 (1_t k/a k)A (1_tk/pk)O is the generating
function for the sieved Pollaczek polynomials of the second kind [7].
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If we put r = 1 and take the limit as c -+ 0 we get

B*A(X, t) = 2tQ(A,r)(x, t)

= _2_ + 2BA(x, t) [(13 _ a) (~)k
t-a a

1 ( tk) - A-I ( tk ) - B ]
. A t 1- u ak 1- u 13k du + 13 ,

which is Eq. (3.27) of [7] giving the generating function for the numerator
polynomials associated with the sieved Pollaczek polynomials of the
second kind.

Another family of generating functions can be derived by using the
following lemma [12]

k-l 00

L P(twj)w-lj = k L Pnk+l tnk +l,
j~O n~O

for 1=0,1,2, ..., k-l.

Using Lemma 1 and formula (2.10) we get the following theorem.

THEOREM 2. The sections, G\r)(x, t), of the generating function
Q(A,rl(x, t) are given by

00

Glr)(x, t):= L Q~~11(X)tn
n~O

+ (Ul+r(x) + tUk_ l_ r_ 2(X))H(x, t),

where Uj(x) is the Chebyshev polynomial of the second kind and

(2.12 )
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1 (t )A -I ( t )B-I
H(x, t) = (1- t/ak)(1- t/f3k) - t 1- ak 1- 13k

[ I( t)-A( t)-B-I
. ak- rB fa 1 - V ak 1 - V 13k V

C dv

I( t)-B( t)-A-I ]+ 13k- rA fa 1 - V13k 1 - v ak VC dv ,

where I, r=O, 1,2, ..., k-l.

The proof follows from (2.10), the lemma, and the relations

00 1
n~o U1+kn(X)t

n
= (1- t/ak)(1- t/f3k) (U1(x) + tUk_ I_ 2(X)),

00 1
n~o UI+r+kn(X)tn = (1- t/ak)(1- t/f3k) (U1+r(x) + tUk_1_ r_ 2(X)).

313

(2.13 )

Put r = 0, k = 1 in (2.12) and we clearly get the generating function of the
associated Pollaczek polynomials [7],

00

g(x, t)= L p~A+I)(COS 0, a, b, C, 1)tn
n~O

1 (t)A -I ( t)B- 1

=(l-t/a)(1-t/f3) t 1-~ I-p

[ I( t)-A( t)-B-I
. aB fa 1- v ~ 1- v /3 V

C dv

1 ( t)-B( t)-A-I ]+ f3A fa 1 - v P 1 - v ~ V
C dv .

Using (2.12) and (2.13) we obtain

Q~~kn(COS 0, 0, 0, c, k) = U1(cos 0) p~.+ I)(COS kO, 0, 0, c, 1)

+ Uk -l~ 2(cos 0) P~A_+II)( cos kO, 0, 0, c, 1)

which generalizes the corresponding relation of Ismail [12, (2.28)].

3. ASYMPTOTIC EXPANSION OF Q~A,r)(X)

We first determine the asymptotic behavior of Q(A,r)(x, t) and their
corresponding numerator polynomials. The tool used is the asymptotic
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as n~oo (3.1)

method of Darboux. This method essentially states that ifJ(z)=L;;C~oInzn,

g(Z)=L;;C~ognzn are analytic functions in Izl<r and I(z)-g(z) is
continuous on Izi = r then In - gn = o(r-n). This version of Darboux's
method is basically the Riemann-Lebesgue Lemma.

Recall that the sieved Pollaczek polynomials of the second kind B~(x)

satisfy the limiting relation [7, (3.8)J

B\X)"'kB_a_(1_f3k)A f3-n n- B
n a - 13 ak T( - B + 1)

for xE~/[ -1,1].

THEOREM 3. For fixed x in the cut plane ~/[ -1, 1J, we have

as n-+oo. (3.2)

Proof It is clear from (2.11) that the generating function Q(A.r)(x, t) is
analytic in t for It I< If3(x)1 < la(x)1 and has the same algebraic singularity
as that of BA(x, t) which is of order -B(x)+ 1 at f3(x). Since af3= 1 we
shall sometimes write 13 2 for f3la. Hence Darboux's method yields (3.2).

Let {Q:(A,r)(x)} be the numerator polynomials associated with
{Q~A,r)(x)}. In order to find the asymptotic expansion of Q~A,r)(x) we first
find the relationship between the these two sets of polynomials. For that
purpose we find the corresponding relation between the unsieved polyno
mial sets {F:(Y)(x)} and {F~Y)(x)}. The former satisfies the same
recurrence relation as the latter, i.e., (2.4) with the initial conditions

It is now easy to verify that

F*(Yl( )=2(1- yULI) pqy
n X 1 n-l'-qy
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We now perform the sieving process (2.3) to get

(3.3 )

r+ 1=k,

n~ 1, r+ 1 i'k,

{
2Q~~t 1)(X),

Q*(A.r)(x) =
n 2C+;:~+ 1) Q~A~V(X),

where Q~::kl(X) must be interpreted as Q~A~OI(x) but with c being replaced
by c+ 1 (see (2.3)).

Thus the asymptotic expansion for Q,i(A.r)(x) follows from (3.1) and
(3.2).

Let K be the set (x - J, x + J) x (0, J), where J >° is such that
9{(B(z)) < 1. For each z E K we can now determine the continued fraction

. Q,i(A,r)(z) N
x(z) = lIm QU r)() D'

n_oo n' Z
ri'k-l, (3.4 )

where

II ( 13 k
) - A-IxLI - u rxk (1 - u) - BuC du

II(f3
k)-A .}+ c L 1- u rx k (1 - u)- Bu' - 1 du

D = (f3k+r - f3k-r) f3 k- rA

When r =k - 1 formula (3.4) still holds with the same value for D but N
is now given by

II ( f3
k)-AN=2f3(A+a+c+l)L uC l-u rxk (l-u)-Bdu.

(3.4a)z tj supp(dr/J).

The continued fraction X(z) is the Stieltjes transform of the distribution
function, dr/J(x), of {Q~.,r)(x)}, that is,

X(z)= f~oo ~r/J~t:,

640/68/3-7
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The left had side of (3.4), X(z), fails to be analytic only on the support
of d¢J(x) where ¢J(x) is the distribution function for {Q~,\,r)(x)}, The right
hand side, on the other hand, is analytic on K and thus may be continued
analytically to Q = {z¢ [ -1,1] and m(B(z)),= 1, 2, 3, ",},

Recall that

J: l (1 - f3 Zku) - A (l - u) - B U c - I du

= L (A;n f3 Znk fll (1- U)-B un+ c - I du
n~O n, 0

_r(c)r(-B+1) (A,C;f3 Zk )
- zF I '

r(-B+c+1) -B+c+1
(3,5)

THEOREM 4, For r,= k - 1 and z E Q the continued fraction X(z) whose
denominators are Q~,\,r)(x) is given by

Proof Use (3.4), (3.5), and the defining formulas for Nand D.
We remark that the right hand side of formula (3.6) has - B + c + 1 = 0,

-1, - 2, ". as removable singularities. These singularities can be removed
by dividing the numerator and the denominator by r( - B + c + 2).

We also have the companion theorem.

THEOREM 5. For r = k - 1 and z E Q the continued fraction X(z) whose
denominators are Q~,\,r)(x) is given by

(
A c + l' f3

Zk
)

2f3(A.+a+c+1)zFI ' '2
-B+c+

X(z)= Zk Zk .
Af3zk(l-r:x Zr ) F (A+l,C+l;f3 )+(-B+C+1) F (A,C;f3 )

Z I -B+c+2 Z 1 -B+c+l

(3.7)
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The purpose of this section is to compute the absolutely continuous
component of the distribution function, ifJ(x), with respect to which
{Q~A,r)(x)} is orthogonal. More precisely we shall determine difJ(x)/dx. This
component is clearly supported in [ -1, 1].

Let x E [ -1, 1], then the discussion in [7, p. 1185] shows that we have
IP(x)1 = la(x)1 in this interval. In addition we assume that X#~j where
~j = cos(n}/k), } = 1, 2, ..., k - 1. This last restriction makes

Thus we may choose y > 0 and 15 > 0 so that

O~u~1. (4.1 )

{ (
P(Z))k}

I-m u a(z) ~y, O~u~l-b (4.2)

for all z in the compact set Kx = [x - 15, x + 15] x [0,15].
In order to compute ifJ'(x) for -1 < x < 1 we need to evaluate

x(t)= lim (x(t-ie)-x(t+ie)),
e-O+

tE [x-b, x+b]. (4.3 )

The inequalities (4.1) and (4.2) ensure the uniform convergence of (4.3).
Thus the Perron-Stieltjes inversion formula gives

1
ifJ'(x)=-2.x(x)

m
(4.4 )

where in (4.4),)= 1,2, ..., k, ~o:= 1, ~k:= -1. Using (3.6) we get

x(x) = {2(a - p)[a2kB( -B+ C+ 1 )2 Fl(B+ l,c + 1; a
2k

)
-A+c+2

(
A C' p

2k
)

X 2Fl _ ~ ~ c + 1 + p
2k

A( - A + c + 1)

(
A + 1 c + l' R2k) (B C' a2k )x F ' ,1-' F "

21 -B+c+2 21 -A+c+l
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(4.5)

In the numerator we use Kummer's solutions of the hypergeometric
differential equation [10, p. 105]. More specifically put Y = f32k and

(
B-

1
)-c F C,; Y

U3=(-Y) 2 1 -A+c+l .

Then the numerator of (4.5) becomes

2(a-f3)(-B+c+l)(-A+c+l)(-y)c+1 ()
-'--"'------"'-----"'--"'---'-- W Y ,

c
(4.6)

where W(y) = u1(Y) u;(y) - U3(Y) u~(y), which satisfies the differential
equation

y(l-y) W'(y)+[(-B+c+l)-(A+c+l)y] W(y)=O. (4.7)

Since A +B = - 2A the general solution of (4.7) is

W(y) = E(I- y)2)' yB-c-1 = E(I- f32k)2). (a 2k )-B+c+ 1. (4.8)

To evaluate the constant E we use the following analytic continuation of
the hypergeometric series [10, p. 108, (2.10)]

(4.9)

where

-A (A, - 2A - c; l/y )
u4(y)=(-y) 2F I l-c+A '

T(1+c-B)F(A-c) F(-B+c+l)F(c-A)
C 1 = F( _ B + 1) r(A) ,C2 = F(c) F( 1 + c + 2A) .

Putting (4.9) in the definition of W(y) and comparing the result with (4.8)
we get

E ( l)c+I_B r (c+l-B)F(c+l-A) (4.10)
= - F(c) F( 1+ c + 2A) .
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Using these values in (4.5),

¢/(x) = 2~ IF( -A + c + 2W 1(1- p2k)-AI2
nF(c + 1) F(c + 1+ 2A)

x IBa 2k(l- p2r) 2F I (B ~~::~ ;2k)

+ (- A + c + 1) 2 F I ( _~ ::: 1)1- 2

.

319

(4.11 )

For c = r = 0 this leads to the absolutely continuous component of the
distribution for the Pollaczak polynomials

¢/ ( ) = 2~ F( - B + 1) r( - A + 1) (1 _ P2k) - A (1 _ a2k) - B

X n r(2A+l) ,

which gives formula [6, (5.11)].
If we recall that, for -1 ~ x = cos 8 ~ 1,

_ ax+b
A=B= -},- ~i= -A-ih(8)

v l-x2

a=p=x+i~=ei8

then

(1- a2k )-B (1- p2k)-A = (1- e- 2ik8 )-A (1- e2ik8 )-B

= 22)" IUk- I (XWA (1 - X2)A e(2k8- It)h(8)

so that (4.11) may be rewritten as

I X _ 22.<+ 1(1 - X2)A+ 1/2 IF(A + c + 2 + ih(8)W
rP ( ) - nF(c + 1) r(c + 1+ 2A)

x IUk_ l (x)I U exp{(2k8-n)h(8n

XIBa2k(l_fl2r) F (B+l,c+l;a
2k

)
fJ 2 I -A+c+2

(
B co a

2k )1-2
+ (- A + c + 1) 2FI " .

-A+c+l
(4.12 )
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5. REMARKS AND PROBLEMS

(5.2)

An isolated point mass Ao at x = X o contributes a simple pole to the
singularities of X(z). Furthermore, (3.4a) shows that the residue of X(z) at
z = Xo is A o. Therefore, by (3.6), the set of isolated points of the discrete
spectrum coincides with the set of zeros of

Af32k(1 - a2r ) 2F l (A +21:Cc~1~f32k) + (1 +c- B) 2F l (_A~:~: c). (5.1)

Determining the latter (zero) set is not easy even in the special case c = 0,
and r > 0, where finding the zeros of the expression (5.1) reduces to solving
the transcendental equation

(
A(X) + 1, 1; f32k) _ B(x) - 1 a2k

2F l 2-B(x) - A(x) (l_a 2k )"

In (5.2) we replaced A and B by A(x) and B(x) to exhibit their dependence
on x. As a matter of fact a and f3 also depend on x,

a=x±p-=1,

ax+b
A(x) = -A ± 1":21""'

yx2 -1

f3 = x +p-=1,
ax+b

B(x) = - A+ 1":21""'
yX2~ 1

Some things are known about the distribution of zeros [10] of the 2Fl'S

in some special cases but nothing seems to be known about solutions of the
transcendental equations like (5.2). The question of studying the distribu
tion of zeros of hypergeometric and confluent hypergeometric functions
needs to be reexamined and existing results need to be extended to cover
solutions of equations like (5.2) or zeros of expressions like (5.1).

The zeros of {Q~A.r)(x)} are differentiable functions of c for any fixed r.
When r = c =°the spectrum of the distribution function is computed in
some detail in [7]. Therefore when lei is small one would expect the
discrete spectrum to continue to behave like the discrete spectrum when
c=O.

Let {Pn(x)} be a sequence of polynomials generated by

P_l(X)=O, Po(x) = 1,

n>O,
(5.3 )

with an and bn real, an#O for all n~O. It is well known that {Pn(x)} are
orthogonal with respect to a positive measure whose moments are finite
and whose support is infinite if and ony if the positivity conditions

for all n > ° (5.4)
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hold. In the case of (2.6) the above positivity conditions will be satisfied if

c+ 1>0, 2A. + 1+ c > 0, ), + a + c + 1 > 0. (5.5 )

The condition c + 1 >°is very natural since c is the association parameter
and one would undoubtedly encounter indeterminacies if c wef(~ allowed to
become a negative integer. There may be cases of orthogonality if c < - 1,
c # - 2, - 3, ... but the analysis in these cases will be very tricky. If we
assume c> -1 then the remaining inequalities in (5.5) hold if and only if
the positivity conditions hold; that is, if and only if the polynomials
Q~A,r)(x) are orthogonal.
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